Desarrollan un método para predecir el origen de las próximas pandemias

  • Aplican Inteligencia artificial aplicada a la investigación, un investigador de la UV dentro del grupo de estudios

Un equipo de investigación publicó en la revista científica Proceedings of the National Academy of Sciences con un enfoque totalmente novedoso: aunque estudios anteriores ya habían investigado cómo las variables medioambientales, filogenéticas y geográficas determinaban la infección de numerosos patógenos, ninguno había desarrollado hasta ahora un método aplicable a un gran número de sistemas en los que se crea esa relación entre patógeno y anfitrión.

En el estudio, los investigadores aportan un enfoque basado en la inteligencia artificial, concretamente a través de machine learning, que puede integrar un gran número de variables y ser aplicado a cualquier sistema de relación entre patógeno y anfitrión. 

Es por ello que estos resultados no solo concuerdan con los datos de cada sistema analizado, sino que también aportan esta nueva herramienta que puede ayudar a descubrir especies anfitrionas potenciales y nuevos “puntos calientes” en la geografía planetaria en los que podría darse esta interacción entre patógeno y especie.

Ángel Luis Robles Fernández, de la Universidad Veracruzana y uno de los autores del estudio, explica la metodología en una entrevista mediante correo electrónico con National Geographic España: “este método solo utiliza una proporción de la información porque partimos de suponer que las interacciones observadas tienen la misma naturaleza y son explicadas con las mismas variables, por lo que se toman como punto de partida las especies con las que se cuenta más información”.

“Esta cantidad de información (alrededor de 80% de los registros) está acumulada sólo en el 20% de las especies. Entonces con esto aseguramos que la señal estadística que usamos para predecir las variables (distancias filogenética, ambiental y geográfica entre anfitriones) tenga poder predictivo y certeza estadística”, afirma Robles.

Junto con Andrés Lira-Noriega, Investigador de la Red de Estudios Moleculares, Diego Santiago-Alarcón, profesor en la Universidad de South Florida, los autores aplicaron el modelo a tres sistemas de relación entre patógenos y anfitriones: los coronavirus y los murciélagos, así como el virus del Nilo-Occidental y la malaria con las aves. 

Sus resultados sugieren que la transmisión de la malaria aviar depende en gran medida de la distancia entre anfitriones, mientras que la transmisión de los coronavirus entre murciélagos se ve afectada principalmente por la distribución geográfica entre especies.

Por su parte, la transmisión del virus del Nilo-Occidental se ve influenciada en gran medida por una combinación de factores medioambientales, geográficos y filogenéticos. “Estamos trabajando en modelar diferentes sistemas parásito-anfitrión, pero también estamos estudiando si podemos modelar otras interacciones biológicas, no sólo parásito anfitrión, sino en general predecir interacciones biológicas”, añade Robles.

De esta información, los investigadores identificaron numerosos puntos calientes alrededor del mundo, detallando cómo la región de Eurasia es particularmente susceptible para que surjan estas interacciones con los patógenos de la malaria aviar (causada por Plasmodium relictum) y el virus del Nilo-Occidental.

Y es que con la llegada de COVID-19 cambió las sociedades tal y como se conocían a escala global. 

Los estragos causados por la COVID-19 encendieron las alarmas y, ahora, la previsión ha pasado a ocupar un papel protagonista en los laboratorios y centros de investigación de todo el mundo. En un planeta cada vez más interconectado en el que los virus surgen y llegan a la otra punta de la Tierra en cuestión de días, detectar de forma temprana los casos de cada nuevo patógeno es crucial. Identificar las zonas en las que podrían ocurrir estas zoonosis aún más.

Con información de National Geographic 

error: Elementosmx